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LETTER TO THE EDITOR 

Comparisons of phase times with tunnelling times based 
on absorption probabilities 

Y 2 Huang and C M Wang 
Institute of Semiconductors, Chinese Academyof Sciences, PO Box912, Beijing 10W83, 
People's Republic of China 

Received 16 April 1991 

Abstract. The times spent by an electron in a scattering event or tunnelling through a 
potential barrier are invesligatedusing amethod basedon the absorption probabilities. The 
reflection and transmission times derived from this method are equal to the local !.armor 
times if the transmission and reflectionprobabilityamplitudesarecomplexanalyticfunctions 
of the complex potential. The numerical resultsshow that they coincide with the phase times 
except as the incident electron energy approaches zero or when the transmission probability 
is too small. If the imaginary potential coven the whole space the tunnelling times are again 
equal to the phase times. The results show that the tunnelling times based on absorption 
probabilities are the best of the various candidates. 

The old question of how long it takes for an electron to tunnel through a barrier has 
received considerable attention, and several solutions have been proposed. Reviewing 
the proposed tunnelling times, Hauge and St0vneng [l] concluded that none of them 
provide a satisfactory answer to the basic question, and the dwell time [Z, 31 and the 
phase time [4,5] are the only well-established times in this context. The dwell time tD, 
defined as the average number of electrons in a region divided by the particle flux of the 
incident beam, offers an exact value for the time spent in a region of space, averaged 
over all incoming particles. The phase times ty and rg are asymptotic results for com- 
pleted scattering events and include self-interference delays as well as the time spent in 
abarrier [l]. Numericalsimulationshowsthatthe traversaltimeof awavepacket through 
a barrier agrees with the phase time rather well [6]. 

Recently, adding an imaginary potential in the tunnelling barrier to probe the 
reflection and traversal times was considered. The analysis showed that the absorption 
probability caused by adding an imaginary potential in the barrier does not distinguish 
between transmission and reflection, and consequently can only yield the dwell time [7]. 
In this letter, we show that the reflection time t+ and transmission time r+ based on the 
recombination process are equal to the tunnelling times derived from the Larmor 
precession [8-101 if the transmission and reflection probability amplitudes are complex 
analytic functions of the complex potential. Moreover, we have ti. = 7: and t+ = T: 
when the whole space including the regions outside the barrier is covered by the imagin- 
ary potential. 

For an incident beam of particles approaching an arbitrary barrier V(z)  (0 e z s d) 
from the left, the stationary-state scattering wavefunction exterior to the barrier region 
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is given by @(z)  = exp(iz) + R exp(-ikr) for z < 0 and Texp(ik(z - d)) forz > d. If 
the potential energy is taken to be zero outside the barrier region, we should have total 
probability conservation IRI2 + I TI2 = 1. By assuming that the potential has a small 
imaginary part AV1, the decay of the probability of the electron in the barrier can be 
described [ll]. The decay time of the electron density modelled by the imaginary 
potential is 

r = -h/2AVl. (1) 

With the imaginary potential, the total probability of reflection and transmission will 
depend on the length of time for which particles stay in the region. A dwell time rb ,  
which is the mean time spent by an incident particle of energy E in the region 0 < z < d, 
canhedefinedby 

lRIZ + 1q2 = exp(-zb/r). (2) 

The reflection and transmission amplitudes R and Tare only related to the size of the 
barrier and the wavevectors in each region, the wavevector is 

k = [2m(E - V)]@/h (3) 
wheremistheelectroneffectivemassandV = V(z) + i AVl 0(z)0(z - d)isthecomplex 
potential energy (S(z) is the unit Heaviside function). In the limit of a small imaginary 
potential, the dwell time derived from (1) and (2) is 

rb = (fL/2)a(lr12 + IRIZ)/JAVIIAV,=~ (4) 

with [RIZ + lqz = 1 at AVI = 0. If the interference between the reflection and trans- 
mission waves can be ignored, we can define a transmission time z+, the mean time if 
the particles are finally transmitted, by 

~T(AVl)~2/~T(AVI = 0)l2 = exp(-z+/r). 

r+  = (h/2) a In[Tl2/8 AVIIAVl=o. 

( 5 )  

(6) 

In the limit of a small imaginary potential, the transmission time is 

In the same way, the reflection time ran, the mean time if particles are finally reflected, 
is 

5; = (h/2) alnjRI2/aAVIIAV,=,. (7) 

It can be easily found that the tunnelling times satisfy the probabilistic rule rb  = 
lT12z+ t (RI2rk,  which was used to examine different definitions [l, 101. Golub ernl 
also obtained this relation and proved that rb equals zD. Substituting T = TR + iTI into 
equation (6) gives 

( 8 )  6 = (h/l q * (TR(a TR/a A 

and the local Larmor transmission time is given by [lo] 

TI(a TI/a A I .&VI = 0 

T,T= -h aVT/aAVR (fi/IT12) (-TR(JTI/~AVR) + T L ( ~ T R / ~ A V ~ ) I A V , - O  (9) 

where the phase shift qT = tan-’(Tl/TR). If the transmission probability amplitude Tis 
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a complex analytic function of the complex potential AV = AV, + i AV,, the Cauchy- 
Riemann condition yields 

aTR/JAVR = aT,/aAV, dTR/d AV, = -aT,/aAVR. (10) 

r p  = rzr. (11) 

From equations (8)-(lo), we find that 

We have a i  = rrR under the same conditions. 

in the above definitions, i.e. 
It should be noted that the potential variation AVis confined in the region 0 c z c d 

v=  v,(z) + A V B ( ~ ) B ( ~  - d) .  (12) 
Now we assume that AV is not confined in the barrier, i.e. V = Vo(z) + AV for the 

whole space. In this case, it is easy to prove that JqT/aE = -aqT/aAV,  from (3), and 
the transmission phase time [4,5] = B JqT/aE equals the local Larmor time tZp 
Hence, for the imaginary potential and the magnetic field covering the whole space, we 
have 

t; = t,T = TT (13) 
if Tis  a complex analytic function of AV. The same results can be obtained for the 
reflection time in the special case. 

Finally, we calculate the tunnelling times for a double-barrier structure: 

0 < z <  b,,  

otherwise 

a + b ,  < z  < a  + b,  + b2 = d 
(14) 

with Vo = 0.3 eV and the electron effective masses equal to 0. lmo and 0.067mo at the 
barriers and in the other regions, respectively, for the GaAs/GaAIAs system. 

Matching the wavefunction and its first derivative divided by the effective mass 
at the interface of adjacent layers gives a system of homogeneous equations. The 
transmission and reflection probability amplitudes T and R can be obtained from 
the equations. The rough approximation of taking (T(V + AVJ - T(V))/AVI to be 
aT/aAV,withAV, = -10-5eVconfinedinthebarrier0 < z < dismadeinthenumerical 
calculation. We plot r; and ty infigure l(a) and s i  and TI in figure 1(b) versusincident 
electron energy E for a double-barrier structure with b, = 30& b, = 20 A, and a = 
50A. As electrons impinge on the barrier from the right-hand side ( z  = d), the trans- 
mission times z) and .; are still as described by figure l(a), and the reflection times are 
plotted in figure 2. The results show that t) and 5; coincide with t: and rg,  respect- 
ively, except as E approaches zero or when the transmission probability is too small. As 
E approaches zero, we have zq+ m and 0. Taking it that AV, covers the whole 
space, the numerical results for t+ and ti are equal to z; and t$, respectively, over 
the whole energy region. We think that the imaginary potential confined in the barrier 
is more reasonable than the one that is not confined in the gedanken experiments. A 
precise measurement of the incident flux is difficult with an imaginary potential that 
covers the whole space. 

It can be found that reflection times take negative values as the incident electron 
energy approaches some resonant position where the reflection probability takes a 
minimum value. The negative value of ti was used to reject the separation of 
T+ and s i  [7]. However, a negative reflection phase time also has physical meaning [2]. 
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FigureLThe tunnellingtimesversusincident electronenergy Efor adouble-barrierstructure 
withb,=30~,b,=20kr,~=50~,andV,=0.3eV:(a)transmissiontimes;(b)reRection 
times; a: and r ;  (dashed line)and r: and r: (solidline). 

FlgureZ.The reflection times versus incident elec. 
uon energy E for a double-barrier structure with 
b I = 2 1 A ,  b 2 = 3 0 A ,  a = S O A ,  and V u =  
0.3 e v ;  76 (dashed line) and r’. (solid line). 
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It is possible that the extrapolated ‘peak’ or the gravity of the reflected wavepacket 
emerges before the peak of the incident wavepacket impinges on the barrier. Applying 
equations (6) and (7) to calculate the mean time spent by transmitted or reflected 
electrons in a region on the far side of a barrier does not give correct results [7], and the 
same question also exists for the local Larmor times [ 1, lo]. This result may indicate that 
r+ and rk cannot be defined locally. Finally, r+ and rk are better candidates than the 
phase times in the non-local case. It should be noted that the phase times cannot be 
defined locally. 

We have shown that the dwell time, the local Larmor times, and the phase times can 
be constructed by inducing a recombination process in the barrier region or the whole 
space. We believe that the tunnelling times derived from the absorption probabilities 
are the best of the various candidates. 

References 

[I] Hauge E H and Stevneng 1 A 1989 Rev. Mod, Phys. 61 911 



Letter to the Editor 5919 

[2] Smith F T  1960 Phys. Reo. 118 349 
131 Biittiker M 1983 Phys. Reu. B 27 6178 
141 Bohm D 1980 Quantum meory  (New York: Prentke-Hall) pp 25761 
[5] Wigner E P 1955 Phys. Reu. 98 145 
[6] Collins S, Lowe D and Barker J R 1987 I .  Phys. C: SolidStute Phys. 20 6213 
[7] Golub R, Felber S, Gahler R and Gutsmiedl E 1990 Phys. Lett. A 148 27 
[SI Baz' A I 1966 Yud. Fiz. 4 252 (Engl. Transl. 1967 Sou. 1. Nucl. Phys, 4 182) 
[9] Rybachenko V F 1967 Yad. Fir. 5 895 (Engl. Transl. 1967 Sou. 3. Nud.  Phys. 5 635) 
[IO] Leavens C R and Aerts G C 1989 Phys. Reu. B 40 5387 
[ I l l  Landau L D and Lifshitz E M 1977 Quanrum Mechanics: Non-Relurioisfic Theory 3rd edn (Oxford: 

Pergamon) p 603 


